Вопрос задан 28.07.2023 в 00:14. Предмет Математика. Спрашивает Мышкин Игорь.

Наименьшее общее кратное чисел 180 и 120

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лушникова Вероника.
Здравствуйте!
Для начала мы должны разложить числа на простые множители:
180 = {2}^{2} \times {3}^{2} \times 5
120 = {2}^{3} \times 3 \times 5
Теперь нужно перемножить числа. Выписываем все числа 1 раз. В случае, если есть числа с разными степенями- выписываем бóльший:
НОК (180;120) =  ={2}^{3} \times {3}^{2} \times 5 = 8 \times 9 \times 5 = 40 \times 9 = 360
Подробное решение в приложении!

ОТВЕТ: 360.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти наименьшее общее кратное (НОК) двух чисел, можно использовать формулу:

НОК(a, b) = |a * b| / НОД(a, b),

где НОД - наибольший общий делитель.

Чтобы найти НОД чисел 180 и 120, можно воспользоваться алгоритмом Евклида или просто найти делители этих чисел и выбрать наибольший общий.

Делители числа 180: 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180. Делители числа 120: 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120.

Наибольший общий делитель (НОД) чисел 180 и 120: 60.

Теперь, чтобы найти НОК(180, 120):

НОК(180, 120) = |180 * 120| / НОД(180, 120) = |21600| / 60 = 360.

Таким образом, наименьшее общее кратное чисел 180 и 120 равно 360.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос