
График функции y=| cosx |


Ответы на вопрос

Вот решено прикрепил..............




To plot the graph of the function y = |cos(x)|, we need to consider both the positive and negative values of the absolute value of the cosine function.
The cosine function, cos(x), oscillates between -1 and 1. The absolute value function, |x|, simply takes the magnitude of any value x and makes it positive. So, the function y = |cos(x)| will always be positive or zero, as it will remove the negative sign from the cosine values.
Let's plot the graph for a range of x-values to see how it looks:
We'll start by plotting the graph from x = -2π to 2π (approximately -6.28 to 6.28).
Here's the graph:
markdown ^
| ___
1.0|_________ / \
| \ / \
| \/ \
0.5| \________
|
|_______________________________> x
In this graph, the function y = |cos(x)| looks like a series of V-shaped peaks with a minimum value of 0 at each peak. The peaks occur when the cosine function is equal to 0 (i.e., at odd multiples of π/2), and the absolute value ensures that the function remains positive or zero throughout.
It's worth noting that the amplitude of the peaks is always 1 (the absolute value of the maximum value of cosine). Therefore, the graph oscillates between 0 and 1.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili