
(4x^2-4x+1)(x^2+6x+5)《0


Ответы на вопрос





To determine the intervals where the expression is less than zero (), we need to find the values of that make the expression negative.
Step 1: Factorize the quadratic expressions. (using the perfect square trinomial formula)
Step 2: Set each factor equal to zero and solve for :
From , we get . From , we get . From , we get .
Step 3: Create a sign chart to analyze the expression's sign in different intervals.
Interval 1: In this interval, both factors and are negative since and are both negative when . The product of two negatives is positive.
Interval 2: In this interval, is positive (a square of a real number is always positive), and is still negative since is negative while is positive. The product of a positive number and a negative number is negative.
Interval 3: In this interval, both factors and are positive since both and and are positive when . The product of two positives is positive.
Step 4: Determine the solution based on the sign chart. The expression is less than zero () in the interval .
So, the solution to the inequality is .


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili