To simplify the expression tan(2n+a)+tan(2n+a), we can use the trigonometric identity for the sum of tangents:
tan(x+y)=1−tan(x)tan(y)tan(x)+tan(y).
Let's set x=2n and y=a in the above identity and then apply it to the given expression:
tan(2n+a)=1−tan(2n)tan(a)tan(2n)+tan(a).
Now, let's set x=2n and y=a in the same identity:
tan(2n+a)=1−tan(2n)tan(a)tan(2n)+tan(a).
Since tan(2n)=1−tan2(n)2tan(n), we can substitute this into the expression for tan(2n+a):
tan(2n+a)=1−1−tan2(n)2tan(n)tan(a)1−tan2(n)2tan(n)+tan(a).
Now, we can rewrite the original expression tan(2n+a)+tan(2n+a) as:
1−tan(2n)tan(a)tan(2n)+tan(a)+1−1−tan2(n)2tan(n)tan(a)1−tan2(n)2tan(n)+tan(a).
To further simplify, we can find a common denominator for the two fractions:
Common Denominator=(1−tan(2n)tan(a))(1−1−tan2(n)2tan(n)tan(a)).
Now, we can combine the fractions over the common denominator:
Common Denominator(tan(2n)+tan(a))(1−1−tan2(n)2tan(n)tan(a))+(1−tan2(n)2tan(n)+tan(a))(1−tan(
0
0