
Y = 3cos(x)^2 - 1найдите область определения


Ответы на вопрос

Ответ:
Область определения вся числовая ось D(f)=(-∞;+∞) или x∈R
Пошаговое объяснение:



To find the domain of the function Y = 3cos(x)^2 - 1, we need to determine the values of x for which the function is defined.
The cosine function, cos(x), is defined for all real numbers. However, the expression 3cos(x)^2 involves squaring the cosine function, which means the result will always be non-negative since the square of any real number is non-negative.
So, for the function Y = 3cos(x)^2 - 1 to be defined, the expression 3cos(x)^2 must be non-negative. Thus, we have the following inequality:
3cos(x)^2 ≥ 0
To satisfy this inequality, cos(x)^2 must be greater than or equal to 0, which means cos(x) must be greater than or equal to 0 or cos(x) must be less than or equal to 0.
cos(x) ≥ 0 This condition is true for x in the interval [0, π/2] and [3π/2, 2π] (and in subsequent periods as well).
cos(x) ≤ 0 This condition is true for x in the interval [π/2, 3π/2] (and in subsequent periods as well).
Now, to find the overall domain, we take the intersection of these two intervals:
Domain of Y = 3cos(x)^2 - 1: [0, π/2] ∪ [3π/2, 2π]
So, the function Y = 3cos(x)^2 - 1 is defined for all x in the range [0, π/2] and [3π/2, 2π], and this pattern repeats in subsequent periods for x.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili