Вопрос задан 23.07.2023 в 12:29. Предмет Математика. Спрашивает Амангелди Мурат.

Какое многочлена не хватает:х^2-13x+40=(x-8).p(x) ,известно,что р(х)=х-а,где а<7

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бабушкин Александр.

Ответ:


Пошаговое объяснение:

х^10(7х^6 + 4х^3 - 3)=0

если многочлен делится на х+1

то х=-1 является корнем верхнего уравнения

это проверяется подстановкой х = - 1

(-1)^10·(7·(-1)^6 + 4·(-1)^3 - 3) = 1·(7·1 - 4·1 - 3) = 7-4-3 = 0

Ответ: делится

0 0
Отвечает Панова Алёна.

Ответ:х^10(7х^6 + 4х^3 - 3)=0


если многочлен делится на х+1


то х=-1 является корнем верхнего уравнения


это проверяется подстановкой х = - 1


(-1)^10·(7·(-1)^6 + 4·(-1)^3 - 3) = 1·(7·1 - 4·1 - 3) = 7-4-3 = 0


Ответ: делится



Пошаговое объяснение:


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте рассмотрим уравнение, которое дано:

х^2 - 13x + 40 = (x - 8) * p(x)

Мы знаем, что p(x) = x - a, где a < 7.

Теперь подставим p(x) в уравнение:

х^2 - 13x + 40 = (x - 8) * (x - a)

Чтобы найти значение a, раскроем скобки:

х^2 - 13x + 40 = x^2 - (8 + a)x + 8a

Теперь сравним коэффициенты при одинаковых степенях x:

  1. Коэффициент при x^2:

1 = 1

  1. Коэффициент при x:

-13 = -(8 + a) (соответствующие коэффициенты равны)

  1. Коэффициент свободного члена:

40 = 8a

Теперь найдем значение а:

-13 = -(8 + a)

Для нахождения a, перенесем -a на левую сторону:

-a = -13 - 8

-a = -21

a = 21

Однако у нас было дано, что a < 7, но полученное значение a равно 21, что не удовлетворяет данному условию. Это означает, что такой многочлен p(x) = x - a, где a < 7, не существует, и, возможно, в условии была допущена ошибка.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос