Вопрос задан 23.07.2023 в 03:32. Предмет Математика. Спрашивает Григорьев Дима.

Объясните, пожалуйста. Производная (2t^3 +t^2-4) = 2 *3t^2 +2t - 0. Почему производная 2 t^3

=2*3t^2 ?????
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Журов Саша.
Открой таблицу производных: производная степенной функции вида у(х)=хⁿ равна у'(х)=n*x^(n-1), т.е. старый показатель делается сомножителем, а новый уменьшается на 1. Доказано миллионы раз
В частности: у'=(√х)'=(х^1/2)'=(1/2)*х^(1/2-1)= (1/2)*х^(-1/2)=1/(2*√х)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Производная функции показывает, как изменяется значение функции при изменении ее аргумента (в данном случае, при изменении переменной t). Производная функции позволяет найти скорость изменения функции в каждой ее точке.

Чтобы найти производную функции f(t), данной вам в виде f(t) = 2t^3 + t^2 - 4, используется правило дифференцирования степенной функции и правило линейной комбинации производных.

Правило дифференцирования степенной функции: d/dx(x^n) = n * x^(n-1)

Теперь найдем производную f'(t):

  1. Дифференцируем каждый член функции: d/dt (2t^3) = 2 * 3 * t^(3-1) = 6t^2 d/dt (t^2) = 2 * t^(2-1) = 2t

  2. Когда мы дифференцируем константу (в данном случае, -4), производная будет равна нулю, так как константа не зависит от переменной t.

Теперь объединим все части, чтобы получить производную функции f(t):

f'(t) = 6t^2 + 2t + 0 = 6t^2 + 2t

Таким образом, правильная производная функции 2t^3 + t^2 - 4 равна 6t^2 + 2t, а не 2 * 3t^2, как вы указали. Возможно, была допущена ошибка при вычислении или неправильно записан результат.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос