
210:(x+4)+9+210:(x-4)=27


Ответы на вопрос

Ответ:
Вот ответ
Пошаговое объяснение:
вап




To solve the equation, we'll need to find the value of 'x' that satisfies the equation. Let's start by simplifying the equation step by step:
Step 1: Remove the parentheses by applying the distributive property: 210/(x+4) + 9 + 210/(x-4) = 27
Step 2: Get rid of fractions by multiplying every term by the least common multiple (LCM) of the denominators, which is (x+4)(x-4):
LCM = (x+4)(x-4)
Multiply all terms by LCM: LCM * (210/(x+4)) + LCM * 9 + LCM * (210/(x-4)) = LCM * 27
Step 3: Cancel out the denominators: 210(x-4) + 9(x+4)(x-4) + 210(x+4) = 27(x+4)(x-4)
Step 4: Expand and simplify: 210x - 840 + 9(x^2 - 4x + 4x - 16) + 210x + 840 = 27(x^2 - 4x + 4x - 16)
Combine like terms: 210x - 840 + 9(x^2 - 16) + 210x + 840 = 27(x^2 - 16)
Step 5: Expand further: 210x - 840 + 9x^2 - 144 + 210x + 840 = 27x^2 - 432
Step 6: Combine like terms: 9x^2 + 420x - 144 = 27x^2 - 432
Step 7: Move all terms to one side of the equation: 9x^2 + 420x - 27x^2 - 144 + 432 = 0
Step 8: Simplify: -18x^2 + 420x + 288 = 0
Step 9: Divide the entire equation by the common factor (6) to simplify: -3x^2 + 70x + 48 = 0
Step 10: Now, we can try to factor the quadratic equation, but it doesn't appear to have simple integer solutions. Instead, let's solve for 'x' using the quadratic formula:
The quadratic formula states that for an equation of the form ax^2 + bx + c = 0, the solutions for x are given by:
x = (-b ± √(b^2 - 4ac)) / 2a
In our case, a = -3, b = 70, and c = 48.
Step 11: Plug the values into the quadratic formula:
x = (-(70) ± √(70^2 - 4*(-3)48)) / 2(-3)
Step 12: Calculate the discriminant (the value inside the square root):
Discriminant = 70^2 - 4*(-3)*48 = 4900 + 576 = 5476
Step 13: Continue with the quadratic formula:
x = (-70 ± √5476) / (-6)
Step 14: Calculate the square root of the discriminant:
√5476 = 74
Step 15: Finally, find the two possible values for 'x':
x = (-70 + 74) / (-6) -> x = 4/(-6) -> x = -2/3
x = (-70 - 74) / (-6) -> x = -144/(-6) -> x = 24
So, the two solutions for the equation are x = -2/3 and x = 24.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili