
{x-7y=5 {3x-21y=157
Смотреть ответ razinoleg razinoleg Ответ: Нет решений Пошаговое объяснение: x=5+7y 3(5+7y)-21y=157 15+21y-21y=157 0y=142 Нет решений you daun?

Ответы на вопрос

It seems like you've provided two linear equations:
- x - 7y = 5
- 3x - 21y = 157
To find the solution to this system of equations, we can use the method of elimination or substitution. Let's use the method of elimination:
Step 1: Multiply the first equation by 3 to make the coefficients of x in both equations the same: 3(x - 7y) = 3(5) => 3x - 21y = 15
Now, we have the system of equations:
- x - 7y = 5
- 3x - 21y = 15
Step 2: Subtract the first equation from the second equation to eliminate x: (3x - 21y) - (x - 7y) = 15 - 5 2x - 14y = 10
Step 3: Divide the entire equation by 2 to simplify it further: x - 7y = 5
Now, we have the following system of equations:
- x - 7y = 5
- x - 7y = 5
Both equations are identical, which means the two lines represented by these equations are parallel. There are no intersection points, and hence, there is no solution that satisfies both equations simultaneously.
In conclusion, you were correct in your initial assessment. The system of equations has no solutions.


Похожие вопросы
Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili