Вопрос задан 19.07.2023 в 15:02. Предмет Математика. Спрашивает Гильманов Тимур.

У"+12у'+36у=2cosx-sinx​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Қуандық Арай.

Ответ:

y+12y+36y=2cos(x)-sin(x)

49y=2cos(x)-sin(x)

y=\frac{2 cos(x)}{49}-\frac{sin(x)}{49}

y=\frac{2 cos(x)-sin(x)}{49}

y=\frac{2 cos(x)-sin(x)}{49}   x∈R

Пошаговое объяснение:x∈R т.е. любое число

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the given second-order linear homogeneous differential equation:

u+12u+36u=2cos(x)sin(x)u'' + 12u' + 36u = 2\cos(x) - \sin(x)

We'll first find the complementary solution (also known as the homogeneous solution) and then look for a particular solution. The general solution will be the sum of the complementary and particular solutions.

Step 1: Find the complementary solution The complementary solution is the solution to the homogeneous equation (right-hand side is zero):

u+12u+36u=0u'' + 12u' + 36u = 0

The characteristic equation for this differential equation is:

r2+12r+36=0r^2 + 12r + 36 = 0

Solving this quadratic equation for rr:

r=b±b24ac2ar = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

where a=1a = 1, b=12b = 12, and c=36c = 36.

r=12±122413621r = \frac{-12 \pm \sqrt{12^2 - 4 \cdot 1 \cdot 36}}{2 \cdot 1}

r=12±1441442r = \frac{-12 \pm \sqrt{144 - 144}}{2}

Since the discriminant is zero, the roots are repeated, and the complementary solution will have the form:

uc(x)=(c1+c2x)e6xu_c(x) = (c_1 + c_2x)e^{-6x}

where c1c_1 and c2c_2 are arbitrary constants.

Step 2: Find the particular solution We are looking for a particular solution to the non-homogeneous part of the equation:

2cos(x)sin(x)2\cos(x) - \sin(x)

We can use the method of undetermined coefficients to find a particular solution. Since the right-hand side contains both cosine and sine terms, we assume a particular solution of the form:

up(x)=Acos(x)+Bsin(x)u_p(x) = A\cos(x) + B\sin(x)

where AA and BB are constants to be determined.

Taking the first and second derivatives of up(x)u_p(x):

up(x)=Asin(x)+Bcos(x)u'_p(x) = -A\sin(x) + B\cos(x)

up(x)=Acos(x)Bsin(x)u''_p(x) = -A\cos(x) - B\sin(x)

Now, substitute these derivatives and up(x)u_p(x) into the original differential equation:

Acos(x)Bsin(x)+12(Asin(x)+Bcos(x))+36(Acos(x)+Bsin(x))=2cos(x)sin(x)-A\cos(x) - B\sin(x) + 12(-A\sin(x) + B\cos(x)) + 36(A\cos(x) + B\sin(x)) = 2\cos(x) - \sin(x)

Simplify:

37Acos(x)+11Bsin(x)=2cos(x)sin(x)-37A\cos(x) + 11B\sin(x) = 2\cos(x) - \sin(x)

Now, equate the coefficients of the sine and cosine terms separately:

37A=2(coefficient of cos(x))-37A = 2 \quad \text{(coefficient of }\cos(x)\text{)}

11B=1(coefficient of sin(x))11B = -1 \quad \text{(coefficient of }\sin(x)\text{)}

Solving for AA and BB:

A=237A = -\frac{2}{37}

B=111B = -\frac{1}{11}

Step 3: General Solution The general solution is the sum of the complementary and particular solutions:

u(x)=uc(x)+up(x)=(c1+c2x)e6x237cos(x)111sin(x)u(x) = u_c(x) + u_p(x) = (c_1 + c_2x)e^{-6x} - \frac{2}{37}\cos(x) - \frac{1}{11}\sin(x)

where c1c_1 and c2c_2 are arbitrar

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос