Вопрос задан 19.07.2023 в 04:30. Предмет Математика. Спрашивает Лазарев Владимир.

В квадрате расстояние от точки пересечения диагоналей до одной из его сторон равно 6.Найдите

площадь этого квадрата
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Чопик Аня.

Ответ:

144

Пошаговое объяснение:

Расстояние от точки диагоналей равно половине стороны. Следовательно сторона 12 .

S=a^2 =12^2=144

0 0
Отвечает Аскаров Ыкылас.
Дополнительное построение:
Высота, проведенная к боковой стороне квадрата.
Тогда получили маленький квадрат. Т.е. сторона исходного равна 2*6=12.
Откуда площадь равна 12^2=144.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть сторона квадрата равна xx.

Известно, что расстояние от точки пересечения диагоналей до одной из его сторон равно 6. Поскольку точка пересечения диагоналей является центром квадрата, получаем, что расстояние от центра квадрата до одной из его сторон равно 6. Это означает, что половина стороны квадрата равна 6.

Таким образом, получаем уравнение: x2=6\frac{x}{2} = 6.

Умножим обе части уравнения на 2, чтобы избавиться от деления: x=12x = 12.

Площадь квадрата равна квадрату длины его стороны: S=x2=122=144S = x^2 = 12^2 = 144.

Ответ: Площадь этого квадрата равна 144.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос