
N+3/2n+2 - n + 1/2n - 2 + 3/n^2 - 1; 2a^2+7a+9/a^3-1 + 4a+3/a^2+a+1


Ответы на вопрос

Ответ:
Ааааааа у кого-то есть ответ?



To simplify the given expressions, let's handle them one by one:
- Simplify (N + 3) / (2N + 2) - (N + 1) / (2N - 2) + 3 / (N^2 - 1):
Step 1: Factor the denominators of each fraction if possible.
- (N + 3) / (2N + 2) can be simplified to (N + 3) / 2(N + 1).
- (N + 1) / (2N - 2) can be simplified to (N + 1) / 2(N - 1).
- 3 / (N^2 - 1) can be simplified to 3 / (N + 1)(N - 1) (using difference of squares).
Step 2: Find the common denominator for the fractions. The common denominator is 2(N + 1)(N - 1).
Step 3: Adjust the numerators to have the common denominator.
- (N + 3) / 2(N + 1) can be rewritten as (N + 3)(N - 1) / 2(N + 1)(N - 1).
- (N + 1) / 2(N - 1) can be rewritten as (N + 1)(N + 1) / 2(N + 1)(N - 1).
- 3 / (N + 1)(N - 1) remains the same.
Step 4: Combine the fractions and simplify further. Now we have: [(N + 3)(N - 1) - (N + 1)(N + 1) + 3] / [2(N + 1)(N - 1)].
Expanding the terms: [N^2 - N + 3N - 3 - (N^2 + 2N + 1) + 3] / [2(N + 1)(N - 1)].
Combining like terms: (N^2 - N + 3N - 3 - N^2 - 2N - 1 + 3) / [2(N + 1)(N - 1)].
Simplifying further: (-N) / [2(N + 1)(N - 1)].
The final simplified expression is: -N / [2(N + 1)(N - 1)].
- Simplify (2a^2 + 7a + 9) / (a^3 - 1) + (4a + 3) / (a^2 + a + 1):
Step 1: Factor the denominators of each fraction if possible.
- a^3 - 1 can be factored as (a - 1)(a^2 + a + 1).
Step 2: Find the common denominator for the fractions. The common denominator is (a - 1)(a^2 + a + 1).
Step 3: Adjust the numerators to have the common denominator.
- (2a^2 + 7a + 9) / (a - 1)(a^2 + a + 1) remains the same.
- (4a + 3) / (a^2 + a + 1) can be rewritten as (4a + 3)(a - 1) / (a - 1)(a^2 + a + 1).
Step 4: Combine the fractions and simplify further. Now we have: (2a^2 + 7a + 9 + (4a + 3)(a - 1)) / [(a - 1)(a^2 + a + 1)].
Expanding the term: (2a^2 + 7a + 9 + 4a^2 + 4a - 4) / [(a - 1)(a^2 + a + 1)].
Combining like terms: (2a^2 + 4a^2 + 7a + 4a + 9 - 4) / [(a - 1)(a^2 + a + 1)].
Simplifying further: (6a^2 + 11a + 5) / [(a - 1)(a^2 + a + 1)].
The final simplified expression is: (6a^2 + 11a + 5) / [(a - 1)(a^2 + a + 1)].


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili