
Дана гипербола 25x²-9у²=225. Найти её оси и расстояние между фокусами.


Ответы на вопрос

Дана гипербола 25x² - 9у² = 225.
Надо привести её уравнение к каноническому виду, для этого обе части разделим на 225.
25x²/225) - (9у²/225) = 225/225.
(x²/9) - (у²/25) = 1, или в каноническом виде:
(x²/3²) - (у²/5²) = 1.
Полуоси: а = 3, в = 5 расстояние от центра до фокуса
с = √(9+25) = √34 ≈ 5,83.
График и параметры приведены во вложениях.
Отсюда следует ответ





Для начала, перепишем уравнение гиперболы в стандартной форме:
где и — полуоси гиперболы.
В данном случае, у нас дано уравнение гиперболы:
Чтобы привести уравнение к стандартной форме, делим все члены на 225:
Теперь можем выделить значения и :
Таким образом, полуоси гиперболы равны и .
Теперь найдем расстояние между фокусами гиперболы. Для гиперболы выполняется следующее свойство:
где — расстояние между фокусами гиперболы. Подставим значения и :
Теперь найдем :
Итак, расстояние между фокусами гиперболы составляет приблизительно 5.83.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili