
5x^2 - y^2 +10y-15=0


Ответы на вопрос

Ответ:
(a, 5 + √5a), (a, 5 - √5a) a ∈ R, бесконечно много решений
Пошаговое объяснение:
5x² - (y² - 10y + 25) + 10 = 0
5x² - (y - 5)² = -10
(y - 5 - √5x)(y - 5 + √5x) = 0
y = 5 + √5x, x∈R
y = 5 - √5x, x∈R



The given equation is 5x^2 - y^2 + 10y - 15 = 0.
To analyze this equation, we can first try to rearrange it in a more manageable form. Let's group the terms involving y together:
5x^2 - (y^2 - 10y) - 15 = 0.
To complete the square for the terms involving y, we need to add and subtract the square of half the coefficient of y (in this case, 10/2 = 5):
5x^2 - (y^2 - 10y + 25 - 25) - 15 = 0.
Now, we can rewrite the equation as:
5x^2 - (y - 5)^2 + 25 - 15 = 0.
Simplifying further:
5x^2 - (y - 5)^2 + 10 = 0.
Now, we have the equation in a standard form, where we can identify the coefficients. From this form, we can see that the equation represents a hyperbola. Specifically, the equation represents a hyperbola centered at (0, 5) with a horizontal transverse axis.
The general form of a hyperbola centered at (h, k) is:
(x - h)^2/a^2 - (y - k)^2/b^2 = 1,
where a and b represent the lengths of the transverse and conjugate axes, respectively.
Comparing the given equation to the general form, we can identify the values:
Center: (h, k) = (0, 5), Transverse axis length: 2a = √10 (since a^2 = 10/5 = 2), Conjugate axis length: 2b = √10 (since b^2 = 10/5 = 2).
Therefore, the equation represents a hyperbola centered at (0, 5) with a transverse axis length of √10 and a conjugate axis length of √10.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili