Вопрос задан 16.07.2023 в 01:17. Предмет Математика. Спрашивает Вебер Лёша.

Можно ли в числе 111 200 101 заменить одну цифру так чтобы полученное число делилось на 9 и на 2

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Архипов Егор.

Ответ:

Пошаговое объяснение:

Число кратно 9 , если сумма его цифр кратна 9. Число кратно 2 , если последняя цифра числа четная или 0

111 200 101

1+1+1+2+1+1=7 не кратно 9

1 не кратно 9

Чтобы число делилось на 9 надо добавить 2, а чтобы было кратно 2 надо последнюю цифру заменить на 0, 2, 4,6, 8 .  Если заменить на 0 , то сумма цифр станет 6 , не кратно 9. Если заменить на 2 , то сумма цифр станет 8 - не кратна 9. Если на 4 , сумма станет 10 , не кратно 9 . Если на 6 , сумма станет 12 - не кратно 9 . Если на 8 , сумма станет 14 не кратно 9. Поскольку заменить можно только одну цифру,, значит нельзя в числе 111200101 заменить одну цифру так , чтобы оно делилось на 2 и 9 одновременно.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы число делилось и на 9, и на 2, необходимо, чтобы оно было кратно 18 (поскольку 18 = 9 × 2).

Проверим, делится ли число 111 200 101 на 18:

111 200 101 ÷ 18 = 6 178 894.5

Поскольку результат деления не является целым числом, число 111 200 101 не делится на 18.

Таким образом, невозможно заменить одну цифру в числе 111 200 101 таким образом, чтобы полученное число делилось и на 9, и на 2.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос