Вопрос задан 15.07.2023 в 01:56. Предмет Математика. Спрашивает Турсынбаева Айнур.

скучающий Лёне и отзывчивый Костя решили поиграть в следующую игру Костя выписывают все чётные

числа от 1 до 200 и считают их сумму Алёне выписывает все нечетные числа от одного до 200 и тоже считает их сумму на сколько сумма у кости получится больше чем у Лёни?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Хертек Аэлита.

Костя выписал числа 2, 4, 6, ..., 196, 198, 200. Таких чисел будет 100. Для того, чтобы посчитать их сумму, будем складывать числа парами, беря одно с начала, другое с конца:

2+200 = 202

4+198 = 202

6+196 = 202

И так далее. Таких пар будет 50, Значит сумма всех чётных чисел от 1 до 200 будет равна 202·50 = 10100

Лёня выписал числа 1, 3, 5, ..., 195, 197, 199. Таких чисел будет так же 100. Сложим их по тому же правилу:

1+199 = 200

3+197 = 200

5+195 = 200

И так далее. Таких пар будет 50. Значит сумма всех нечётных чисел от 1 до 200 будет равна 200·50 = 10000.

Тогда сумма у Кости будет на 10100-10000 = 10 больше, чем у Лёни.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы решить эту задачу, нужно вычислить сумму всех чётных чисел от 1 до 200 и сумму всех нечётных чисел от 1 до 200, а затем сравнить полученные суммы. Давайте это сделаем:

Сумма чётных чисел: 1 + 2 + 3 + ... + 198 + 199 + 200

Для вычисления этой суммы можно использовать формулу суммы арифметической прогрессии: Сумма = (первый элемент + последний элемент) * количество элементов / 2

Первый чётный элемент: 2 Последний чётный элемент: 200 Количество чётных элементов: (200 - 2) / 2 + 1 = 100

Сумма чётных чисел = (2 + 200) * 100 / 2 = 202 * 100 / 2 = 10100

Сумма нечётных чисел: 1 + 3 + 5 + ... + 197 + 199

Снова используем формулу суммы арифметической прогрессии: Первый нечётный элемент: 1 Последний нечётный элемент: 199 Количество нечётных элементов: (199 - 1) / 2 + 1 = 100

Сумма нечётных чисел = (1 + 199) * 100 / 2 = 200 * 100 / 2 = 10000

Таким образом, сумма чётных чисел (у Кости) будет больше, чем сумма нечётных чисел (у Лёни), на 10100 - 10000 = 100. Ответ: 100.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос