Вопрос задан 14.07.2023 в 02:18. Предмет Математика. Спрашивает Гашишев Дмитрий.

1) 3(x-1,5) + 2,5 =11,5 2) (x+1) + (x-2) + (x+3) + (x+4) =100 3) 2/3 (x+1 - 1/3 = 1

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Стрекаловский Игорь.

Ответ:

1)3(x-1,5)+2,5 = 11,5

3(x-1,5) = 11,5-2,5

3(x-1,5) = 9

x-1,5 = 3

х = 4,5

2)(x+1)+(x-2)+(x+3)+(x+4) =100

4х+6 = 100

4х = 94

х = 94/4 = 23,5

3)2/3(x+1)-1/3 = 1

2/3(x+1) = 4/3

х+1 = 2

х = 1

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve these equations, let's find the values of 'x' that satisfy each equation step by step:

  1. 3(x - 1.5) + 2.5 = 11.5

Step 1: Distribute the 3 on the left side of the equation: 3x - 4.5 + 2.5 = 11.5

Step 2: Combine like terms on the left side of the equation: 3x - 2 = 11.5

Step 3: Isolate 'x' by getting rid of the constant term on the left side. We can do this by adding 2 to both sides of the equation: 3x = 11.5 + 2

Step 4: Simplify the right side of the equation: 3x = 13.5

Step 5: Finally, divide both sides by 3 to solve for 'x': x = 13.5 / 3 x = 4.5

So the value of 'x' that satisfies the first equation is x = 4.5.

  1. (x + 1) + (x - 2) + (x + 3) + (x + 4) = 100

Step 1: Combine like terms on the left side of the equation: 4x + 6 = 100

Step 2: Isolate 'x' by getting rid of the constant term on the left side. We can do this by subtracting 6 from both sides of the equation: 4x = 100 - 6

Step 3: Simplify the right side of the equation: 4x = 94

Step 4: Finally, divide both sides by 4 to solve for 'x': x = 94 / 4 x = 23.5

So the value of 'x' that satisfies the second equation is x = 23.5.

  1. 2/3(x + 1) - 1/3 = 1

Step 1: Distribute the 2/3 on the left side of the equation: (2/3)x + 2/3 - 1/3 = 1

Step 2: Combine like terms on the left side of the equation: (2/3)x + 1/3 = 1

Step 3: Isolate '(2/3)x' by getting rid of the constant term on the left side. We can do this by subtracting 1/3 from both sides of the equation: (2/3)x = 1 - 1/3

Step 4: Simplify the right side of the equation: (2/3)x = 2/3

Step 5: Finally, multiply both sides by the reciprocal of (2/3), which is 3/2, to solve for 'x': x = (2/3) * (3/2) x = 1

So the value of 'x' that satisfies the third equation is x = 1.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос