
(3х+1)^2+33>(2х+5)^2


Ответы на вопрос

Ответ в файле
………………………..




Let's simplify and solve the inequality step by step:
Step 1: Expand the expressions within the parentheses. (3x + 1)^2 + 33 > (2x + 5)^2
Expanding the square terms: (3x + 1)(3x + 1) + 33 > (2x + 5)(2x + 5) 9x^2 + 6x + 1 + 33 > 4x^2 + 20x + 25
Step 2: Move all terms to one side of the inequality to get it in the standard form (ax^2 + bx + c > 0): 9x^2 + 6x + 1 + 33 - 4x^2 - 20x - 25 > 0
Step 3: Combine like terms: 5x^2 - 14x + 9 > 0
Now, we have a quadratic inequality in the form of ax^2 + bx + c > 0. To solve this inequality, we can use either the graphing method or the algebraic method (factoring and solving for x). Let's use the algebraic method:
Step 4: Factor the quadratic expression (if possible): The expression 5x^2 - 14x + 9 cannot be factored further using integer coefficients, so we move on to the next step.
Step 5: Solve for x: Since the inequality is in the form ax^2 + bx + c > 0, we want to find the intervals where the parabola is above the x-axis (positive) to satisfy the inequality.
To do this, we can use the quadratic formula: x = (-b ± √(b^2 - 4ac)) / 2a
In our case, a = 5, b = -14, and c = 9:
x = (14 ± √((-14)^2 - 4 * 5 * 9)) / 2 * 5 x = (14 ± √(196 - 180)) / 10 x = (14 ± √16) / 10 x = (14 ± 4) / 10
Now we have two potential solutions for x:
- x = (14 + 4) / 10 = 18 / 10 = 9 / 5
- x = (14 - 4) / 10 = 10 / 10 = 1
Step 6: Determine the intervals where the inequality is satisfied: Now we need to test the inequality in the intervals to see where it holds true.
Test x = 0 (a value less than 1): 5(0)^2 - 14(0) + 9 = 9 > 0 (True)
Test x = 1 (a value between 1 and 9/5): 5(1)^2 - 14(1) + 9 = 0 (Not greater than 0)
Test x = 2 (a value between 9/5 and 3): 5(2)^2 - 14(2) + 9 = -3 (Not greater than 0)
Test x = 3 (a value greater than 3): 5(3)^2 - 14(3) + 9 = 9 > 0 (True)
Step 7: Final solution: The inequality is true when x is either less than 1 or greater than 3: x < 1 or x > 3.
Therefore, the solution to the inequality (3x + 1)^2 + 33 > (2x + 5)^2 is x < 1 or x > 3.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili