
Y''+3y'+2y=0,x=0,y=1,y'=4


Ответы на вопрос

Ответ:
решение на фотографии




To solve the given second-order ordinary differential equation with the given initial conditions, we need to find the solution y(x). The equation is:
Y'' + 3Y' + 2Y = 0
First, let's find the characteristic equation by assuming a solution of the form:
Y(x) = e^(rx)
where r is a constant to be determined. Substituting this into the differential equation, we get:
r^2 e^(rx) + 3r e^(rx) + 2 e^(rx) = 0
Divide the equation by e^(rx) to simplify:
r^2 + 3r + 2 = 0
Now, we can solve the quadratic equation for r:
r = (-b ± √(b^2 - 4ac)) / 2a
where a = 1, b = 3, and c = 2:
r = (-(3) ± √(3^2 - 4 * 1 * 2)) / (2 * 1)
r = (-3 ± √(9 - 8)) / 2
r = (-3 ± √1) / 2
Now, we have two possible values for r:
- r1 = (-3 + 1) / 2 = -1
- r2 = (-3 - 1) / 2 = -2
The general solution for the differential equation is a linear combination of the solutions for r1 and r2:
Y(x) = C1 * e^(-x) + C2 * e^(-2x)
Now, we apply the initial conditions to find the values of C1 and C2.
Given: x = 0, y = 1, y' = 4
Substitute x = 0 and y = 1 into the general solution:
1 = C1 * e^(0) + C2 * e^(0) 1 = C1 + C2
Next, differentiate the general solution with respect to x to find y':
y' = -C1 * e^(-x) - 2C2 * e^(-2x)
Now, substitute x = 0 and y' = 4 into the y' equation:
4 = -C1 * e^(0) - 2C2 * e^(0) 4 = -C1 - 2C2
Now, we have a system of two equations with two unknowns:
- C1 + C2 = 1
- -C1 - 2C2 = 4
We can solve this system of equations to find the values of C1 and C2.
Adding both equations:
C1 + C2 - C1 - 2C2 = 1 + 4
Simplifying:
-C2 = 5
Divide by -1:
C2 = -5
Now, substitute the value of C2 back into the first equation to find C1:
C1 + (-5) = 1
C1 = 1 + 5
C1 = 6
So, the values of C1 and C2 are:
C1 = 6 C2 = -5
The final solution for the given differential equation with the initial conditions is:
Y(x) = 6 * e^(-x) - 5 * e^(-2x)


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili