
2/5*z+2\3*z-7\15 решить уравнение


Ответы на вопрос





To solve the equation 2/5z + 2/3z - 7/15 = 0, we need to find the value of 'z' that satisfies the equation. To do this, we'll first find a common denominator for the fractions and then combine the 'z' terms.
The common denominator for 5, 3, and 15 is 15. So, we'll rewrite the equation with all fractions having a denominator of 15:
(2/5) * z + (2/3) * z - (7/15) = 0
To combine the 'z' terms, we'll find a common factor of 'z' and factor it out:
z * (2/5 + 2/3) - 7/15 = 0
Now, we'll find a common denominator for 5 and 3, which is 15, to add the fractions:
z * ((23)/(53) + (25)/(35)) - 7/15 = 0
z * (6/15 + 10/15) - 7/15 = 0
z * (16/15) - 7/15 = 0
Now, let's get rid of the denominator by multiplying the entire equation by 15:
15 * (z * (16/15) - 7/15) = 15 * 0
This simplifies to:
z * 16 - 7 = 0
Next, we'll isolate 'z' by moving the constant term (-7) to the other side of the equation:
z * 16 = 7
Finally, divide both sides by 16 to solve for 'z':
z = 7/16
So, the solution to the equation is:
z = 7/16


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili