Вопрос задан 12.07.2023 в 20:17. Предмет Математика. Спрашивает Муслимов Эмрах.

Точка A удалена от плоскости на расстояние d. Найдите длины наклонных, проведенных с этой точки под

такими углами к плоскости: 1) 30 °; 2) 45 °; 3) 60 °.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Феоктистова Виктория.

Ответ:

2

Пошаговое объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти длины наклонных, проведенных из точки A под данными углами к плоскости, мы можем использовать тригонометрические соотношения.

Пусть h будет высотой точки A над плоскостью (также известной как расстояние d).

  1. Угол 30°: Длина наклонной, проведенной под углом 30° к плоскости, может быть найдена по формуле: l = h / sin(30°) l = h / (1/2) l = 2h

Таким образом, длина наклонной под углом 30° равна 2h.

  1. Угол 45°: Длина наклонной, проведенной под углом 45° к плоскости, может быть найдена по формуле: l = h / sin(45°) l = h / (√2 / 2) l = √2h

Таким образом, длина наклонной под углом 45° равна √2h.

  1. Угол 60°: Длина наклонной, проведенной под углом 60° к плоскости, может быть найдена по формуле: l = h / sin(60°) l = h / (√3 / 2) l = (2/√3)h l ≈ 1.155h

Таким образом, длина наклонной под углом 60° примерно равна (2/√3)h или около 1.155h.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос