
Некоторое двузначное число в 4 раза больше суммы и в 3 раза больше произведение своих цифр. Найти
это число.

Ответы на вопрос

Пошаговое объяснение:
Пусть а - число десятков, в - число единиц.
Тогда некое двузначное число можно представить как 10а+в
а+в - сумма своих цифр
ав - произведение своих цифр.
Уравнения:
1) 10а+в = 4(а+в)
2) 10а+в = 3ав
Упростим первое уравнение:
10а+в = 4а + 4в
10а-4а = 4в-в
6а = 3в
2а = в
Или
в=2в
Некое двузначное число:
10а+в = 10•2 + 4 = 24
ОТВЕТ: некое число 24.
Проверка:
1) Сумма цифр = 2+4 = 6
2) 24:6 = 4 - во столько раз некое число больше суммы своих цифр.
3) Произведение цифр = 2•4=8
4) 24:8=3 - во столько раз некое число больше произведения своих цифр.



Пусть число представляется в виде AB, где A - это десятки, а B - это единицы.
Мы знаем, что число AB в 4 раза больше суммы своих цифр, то есть:
10A + B = 4(A + B)
Раскрываем скобки:
10A + B = 4A + 4B
Переносим все термины с B на одну сторону уравнения, а все термины с A на другую сторону:
10A - 4A = 4B - B
6A = 3B
Делим обе части на 3:
2A = B
Теперь мы знаем, что B равно удвоенному значению A.
Мы также знаем, что число AB в 3 раза больше произведения своих цифр, то есть:
10A + B = 3AB
Заменяем B на 2A:
10A + 2A = 3A(2A)
12A = 6A^2
Делим обе части на 6A (так как A не может быть равно нулю):
2 = A
Таким образом, A равно 2, а B равно 4.
Итак, двузначное число, удовлетворяющее заданным условиям, - это число 24.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili