
Сторона равностороннего треугольника равна 4√3 дм. Вычисли: 1. площадь треугольника; 2. радиус
окружности, вписанной в треугольник; 3. радиус окружности, описанной около треугольника.

Ответы на вопрос

a = 4\sqrt{3}
1. Площадь треугольника:
S = \frac{ {a}^{2} \sqrt{3} }{4} \\S = \frac{ {(4 \sqrt{3}) }^{2} \sqrt{3} }{4} = \frac{16 \times 3 \times \sqrt{3} }{4} = \\ = 12 \sqrt{3}
2. Радиус окружности, вписанной в треугольник:
r=\frac{a \sqrt{3} }{6} \\ r =\frac{4 \sqrt{3} \times \sqrt{3} }{6} = \frac{4\times 3}{6} = 2
3. Радиус окружности, описанной около треугольника:
R = \frac{a \sqrt{3} }{3} \\ R = \frac{4 \sqrt{3} \times \sqrt{3} }{3} = \frac{4 \times 3}{3} = 4



Для решения задачи воспользуемся следующими свойствами равносторонних треугольников:
- Площадь равностороннего треугольника: Площадь равностороннего треугольника можно вычислить, используя формулу: Площадь = (сторона^2 * √3) / 4.
В данном случае, сторона треугольника равна 4√3 дм: Площадь = (4√3)^2 * √3 / 4 = 48 дм^2.
- Радиус вписанной окружности: Радиус вписанной окружности в равносторонний треугольник можно вычислить, используя формулу: Радиус вписанной окружности = (сторона треугольника) / (2√3).
В данном случае: Радиус вписанной окружности = 4√3 / (2√3) = 2 дм.
- Радиус описанной окружности: Радиус описанной окружности в равностороннем треугольнике можно вычислить, используя формулу: Радиус описанной окружности = (сторона треугольника) / (√3).
В данном случае: Радиус описанной окружности = 4√3 / √3 = 4 дм.
Итак, ответы на ваши вопросы:
- Площадь равностороннего треугольника: 48 дм^2.
- Радиус вписанной окружности: 2 дм.
- Радиус описанной окружности: 4 дм.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili