
Знайдіть похідну функції. СРОЧНО 1) y=3x/x^3+3 / - Дробь 2) y=x*ln x


Ответы на вопрос

Ответ: надеюсь правильно
Пошаговое объяснение:
y = x^3⋅(ln(x)^2)
Сначала считаем первую производную по след формулам
y = f(x)*g(x) => y' = f'(x)*g(x)+f(x)*g'(x)
y = f(g(x)) => y' = f'(g(x))*g'(x)
y = x^n => y' = n*x^(n-1)
y = ln(x) => y' = 1/x
y = f(x)+g(x) => y' = f'(x) +g'(x)
y'= (3x^2)*((ln(x))^2) + (x^3)*(2ln(x)*(1/x))
Теперь рассчитаем вторую производную
y'' = { 6x*((ln(x))^2)+(3x^2)*(2ln(x)*(1/x) } + { (3x^2)*(2ln(x)*(1/x))+(x^3)*(2*(1/x)*(1/x)+2ln(x)*((-2)x^(-3)) }



Звісно, я допоможу з цими похідними. Давайте розглянемо їх один за одним:
- y = (3x / (x^3 + 3))
Для обчислення похідної цієї функції застосуємо правило диференціювання дробових функцій (правило диференціювання частки):
Похідна (u / v) = (u'v - uv') / v^2,
де u' - похідна виразу u по x, і v' - похідна виразу v по x.
У нашому випадку: u = 3x, v = x^3 + 3.
Знаходимо похідні: u' = 3, v' = 3x^2.
Підставляємо ці значення в формулу:
y' = ((3 * (x^3 + 3)) - (3x * 3x^2)) / (x^3 + 3)^2.
Спрощуємо вираз:
y' = (3x^3 + 9 - 9x^3) / (x^3 + 3)^2, y' = (9 - 6x^3) / (x^3 + 3)^2.
Таким чином, похідна функції y = (3x / (x^3 + 3)) дорівнює (9 - 6x^3) / (x^3 + 3)^2.
- y = x * ln(x)
Для обчислення похідної цієї функції застосуємо правило диференціювання добутку:
Похідна (uv) = u'v + uv',
де u' - похідна виразу u по x, і v' - похідна виразу v по x.
У нашому випадку: u = x, v = ln(x).
Знаходимо похідні: u' = 1, v' = 1/x.
Підставляємо ці значення в формулу:
y' = (1 * ln(x)) + (x * 1/x), y' = ln(x) + 1.
Отже, похідна функції y = x * ln(x) дорівнює ln(x) + 1.


Похожие вопросы


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili