
Расстояние между пунктами A и B автомобиль проехал за 1,3 часа, а автобус — за 2,2 часа. Найди
скорость каждой машины, если автомобиль двигался на 36 км/ч быстрее, чем автобус. Ответ:скорость автобуса — км/ч;скорость автомобиля — км/ч.

Ответы на вопрос

Ответ:
За X взять скорость автобуса, тогда получаем уравнение, в котором приравниваем расстояние ( которое одинаково для автобуса и для автомобиля)
1,3 * (X + 36) = 2,2 * X
1,3x + 36*1,3 = 2,2x
1,3x-2,2x = -46,8
-0,9x = -46,8
x = -46,8 : -0,9
x = 52
Скорость автобуса - 52 км в час
Скорость автомобиля - 52+36 = 88 км в час



Ответ:27 км
Пошаговое объяснение:



Давайте предположим, что скорость автобуса составляет "V" км/ч. Тогда скорость автомобиля будет "V + 36" км/ч.
Мы знаем, что расстояние = скорость × время.
Для автобуса: Расстояние = V × 2.2.
Для автомобиля: Расстояние = (V + 36) × 1.3.
Так как расстояние между пунктами A и B одинаково для обеих машин, мы можем приравнять выражения:
V × 2.2 = (V + 36) × 1.3.
Раскроем скобки:
2.2V = 1.3V + 46.8.
Теперь выразим V:
0.9V = 46.8.
V = 46.8 / 0.9 ≈ 52.
Таким образом, скорость автобуса составляет около 52 км/ч, а скорость автомобиля будет:
V + 36 = 52 + 36 = 88 км/ч.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili