Вопрос задан 08.07.2023 в 07:32. Предмет Математика. Спрашивает Ранджелович Слава.

На кондитерской фабрике планируется изготовить из маленьких шоколадных шариков с радиусом r самую

большую в мире конфету в форме шара. Сколько необходимо расплавить маленьких шоколадных шариков, чтобы получить шар объёмом V? (Прими π≈3.)V=937500см3;r=2,5см;π≈3.n= Помогите прошу .​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Агилов Ринат.

Ответ:

n = 15000

Пошаговое объяснение:

n = V ÷ Vшарика

Vшарика = 4/3 * πr³ = 2,5³ = 62,5

n = 937500 ÷ 62,5 = 15000

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи нам понадобится знать объем одного маленького шоколадного шарика. Объем шара можно вычислить по формуле V = (4/3) * π * r^3, где V - объем, π - число пи (примем его равным 3), r - радиус.

Используя данные из задачи, подставим значения в формулу:

V = (4/3) * 3 * (2.5^3) V = 4 * (2.5^3) V = 4 * 15.625 V = 62.5

Таким образом, объем одного маленького шоколадного шарика составляет 62.5 см³.

Чтобы узнать, сколько необходимо расплавить шариков, чтобы получить конфету объемом 937500 см³, нужно разделить общий объем на объем одного шарика:

Количество шариков = V_общий / V_шарика Количество шариков = 937500 / 62.5 Количество шариков = 15000

Таким образом, необходимо расплавить 15000 маленьких шоколадных шариков, чтобы получить конфету объемом 937500 см³.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос