Вопрос задан 08.07.2023 в 05:47. Предмет Математика. Спрашивает Лукпанова Дана.

X+4/X-3 * 3x - 9/ x^2+8x+16 :15/xy+4xy=? Упростите выражение.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Печёнкин Олег.

ответ на фотографии ^^^^^^^^^^^^^^


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте по порядку упростим выражение.

  1. Начнем с первой части: (x + 4) / (x - 3) * (3x - 9) / (x^2 + 8x + 16). Приведем числители и знаменатели к наименьшему общему множителю. Заметим, что x^2 + 8x + 16 является квадратным триномом, который можно разложить на множители как (x + 4)^2. Таким образом, выражение становится: (x + 4) / (x - 3) * (3x - 9) / (x + 4)^2.

  2. Теперь рассмотрим вторую часть: 15 / (xy + 4xy). Выполним сокращение дроби, выделив общий множитель в знаменателе: 15 / (xy(1 + 4)). Упростим дальше: 15 / (5xy). Делим числитель и знаменатель на 5: 3 / (xy).

Теперь объединим две упрощенные части выражения:

[(x + 4) / (x - 3) * (3x - 9) / (x + 4)^2] / (3 / (xy)).

Чтобы разделить одну дробь на другую, мы можем умножить первую дробь на обратную второй дроби:

[(x + 4) / (x - 3) * (3x - 9) / (x + 4)^2] * (xy / 3).

Теперь мы можем произвести упрощение, сократив общие множители:

[(x + 4) * (3x - 9) * xy] / [(x - 3) * (x + 4)^2 * 3].

Итак, упрощенное выражение равно: [(x + 4) * (3x - 9) * xy] / [(x - 3) * (x + 4)^2 * 3].

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос