
Решить уравнение ab/c+ac/b+bc/d=3


Ответы на вопрос

Ответ:
1,1,1
1,-1,-1
-1,1,-1
-1,-1,1
Пошаговое объяснение:
Разделим левую и правую часть на abc. Получим
1/a^2+1/b^2+1/c^2=3/abc
Сделаем замену x=1/a, y=1/b, z=1/c , тогда уравнение запишется как
x^2-(3yz)x+y^2+z^2=0
Будем искать x, как корень квадратного уравнения.
Вычислим дискриминант
D=9y^2*z^2-4(y^2+z^2)
Вернемся к переменным a,b,c тогда
D=9*1/b^2*1/c^2-4(1/b^2+1/c^2)=(9-4(a^2+b^2))/(a^2*b^2)
В предположении,что a и b - целые числа, они могут принимать значения -1 и 1.
D в этом случае равен 1.
Тогда x=(3yz+/-1)/2
Если y и z одного знака (-1 или 1), то x=1 или 2
Если y и z разного знака , то x=-1 или -2
Вспоминая, что x=1/a, получаем значения для a



Для решения данного уравнения, нам необходимо знать значения переменных a, b, c и d. Если вы можете предоставить эти значения, я смогу помочь вам с решением уравнения.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili