
Sin2x-sin8x-cos10x=1


Ответы на вопрос

Ответ:
Пошаговое объяснение:
sin2x-sin8x = 2*(-sin3x)* cos5x
2*(-sin3x)* cos5x - cos^2 (5x) + sin^2 (5x) - sin^2 (5x) - cos^2 (5x) = 0
2*(-sin3x)* cos5x - 2cos^2 (5x) = 0
sin3x * cos5x + cos^2 (5x) = 0
cos5x * (sin3x + cos5x) = 0
cos5x * (sin3x + sin(pi/2 - 5x)) = 0
cos5x * 2sin(pi/4 - x) * cos(4x - pi/4) = 0
cos5x = 0
5x = pi/2 + pin
x1 = pi/10 + pin/5, n ∈ Z
sin(pi/4 - x) = 0
pi/4 - x = pik
x2 = pi/4 - pik, k ∈ Z
cos(pi/4 + 4x) = 0
4x - pi/4 = pi/2 + pim
4x = 3pi/4 + pim
x3 = 3pi/16 + pim/4, m ∈ Z



To solve the equation sin(2x) - sin(8x) - cos(10x) = 1, we'll break it down into simpler parts and solve each component individually.
Let's start by rewriting the equation:
sin(2x) - sin(8x) - cos(10x) = 1
To solve trigonometric equations like this, it's helpful to use trigonometric identities and properties. In this case, we'll use the sum-to-product and double angle identities.
Step 1: Simplifying sin(2x)
We'll use the double angle identity sin(2θ) = 2sin(θ)cos(θ) to simplify sin(2x):
sin(2x) = 2sin(x)cos(x)
The equation becomes:
2sin(x)cos(x) - sin(8x) - cos(10x) = 1
Step 2: Simplifying sin(8x)
We'll use the sum-to-product identity sin(A) - sin(B) = 2cos((A + B)/2)sin((A - B)/2) to simplify sin(8x):
sin(8x) = sin(10x - 2x) = 2cos(6x)sin(2x)
The equation becomes:
2sin(x)cos(x) - 2cos(6x)sin(2x) - cos(10x) = 1
Step 3: Simplifying cos(10x)
We'll use the double angle identity cos(2θ) = 1 - 2sin²(θ) to simplify cos(10x):
cos(10x) = cos(8x + 2x) = cos²(8x) - sin²(8x) = (1 - 2sin²(4x))(1 - 2sin²(4x)) = 1 - 4sin²(4x) + 4sin⁴(4x)
The equation becomes:
2sin(x)cos(x) - 2cos(6x)sin(2x) - (1 - 4sin²(4x) + 4sin⁴(4x)) = 1
Simplifying further:
2sin(x)cos(x) - 2cos(6x)sin(2x) + 4sin²(4x) - 4sin⁴(4x) + 1 = 1
2sin(x)cos(x) - 2cos(6x)sin(2x) + 4sin²(4x) - 4sin⁴(4x) = 0
Step 4: Rearranging terms
Rearranging the terms in descending powers of sin:
-4sin⁴(4x) + 4sin²(4x) + 2sin(x)cos(x) - 2cos(6x)sin(2x) = 0
Step 5: Factoring out sin²(4x)
Factoring out sin²(4x):
sin²(4x)(-4sin²(4x) + 4) + 2sin(x)cos(x) - 2cos(6x)sin(2x) = 0
Step 6: Simplifying further
Using the Pythagorean identity sin²(θ) + cos²(θ) = 1, we can rewrite -4sin²(4x) + 4 as 4cos²(4x):
sin²(4x)(4cos²(4x)) + 2sin(x)cos(x


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili