
(x^2 +x+ 2)(х – 4) < 0;


Ответы на вопрос

Пошаговое объяснение:
вот так надо решать...




To solve the inequality , we can use a method called the sign chart.
Step 1: Find the critical points. To determine the critical points, we set each factor equal to zero and solve for : has no real solutions because the discriminant is negative. gives .
Step 2: Create a sign chart. We consider three intervals based on the critical points: , , and (we include this point since the inequality is not strict).
Step 3: Determine the sign of each factor in each interval. For the factor , since the coefficient of the term is positive, the parabola opens upward, indicating that the expression is positive for all real values of .
For the factor , we can use test points to determine the sign. Choosing a test point from each interval:
- For , which is negative.
- For , which is positive.
Step 4: Determine the sign of the whole expression. To determine the sign of the whole expression, we multiply the signs of each factor together:
- In the interval , we have (+)(-) = (-), indicating that the expression is negative in this interval.
- At , the expression equals 0.
- In the interval , we have (+)(+) = (+), indicating that the expression is positive in this interval.
Step 5: Write the solution. From the sign chart, we see that the inequality holds true for in the interval .
Therefore, the solution to the inequality is .


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili