Вопрос задан 04.07.2023 в 00:25. Предмет Математика. Спрашивает Барсянин Максим.

График функции y=kx + b проходит через точки A(6;7) и B (-2;11). Найдите a и b.​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Абилова Жанбота.

6k+b=7

-2k+b=11

8k=-4

k=-0.5

b=11+2k

b=11+1

b=12

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для найти коэффициенты kk и bb в уравнении y=kx+by = kx + b по точкам A(6,7)A(6, 7) и B(2,11)B(-2, 11), мы можем использовать следующие шаги:

  1. Найдем значение kk (наклон):

    Используем координаты точек AA и BB для вычисления kk:

    k=yByAxBxA=11726=48=12k = \frac{y_B - y_A}{x_B - x_A} = \frac{11 - 7}{-2 - 6} = \frac{4}{-8} = -\frac{1}{2}

  2. Найдем значение bb (смещение):

    Теперь, зная kk, мы можем использовать любую из точек (давайте используем точку AA) и подставить значения xx и yy, чтобы найти bb:

    y=kx+by = kx + b \ 7=126+b7 = -\frac{1}{2} \cdot 6 + b \ 7=3+b7 = -3 + b \ b=7+3=10b = 7 + 3 = 10

Таким образом, a=12a = -\frac{1}{2} и b=10b = 10, и уравнение функции y=kx+by = kx + b будет y=12x+10y = -\frac{1}{2}x + 10.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос