
Найдите Нод:а) 26, 65 и 130;b) 48, 240 и 264; еc) 72, 432 и 762;d) 163, 310 и 997.


Ответы на вопрос

Ответ:
Пошаговое объяснение:
Нод 26, 65, 30 = 13
Нод 48, 240, 264 = 24
Нод 72, 432, 762 = 6
Нод 163, 310, 997 = 1



Ответ:
a)НОД (26,65,130)=13
26=2*13
65=5*13
130=2*5*13
B) НОД (48, 240, 264)=2*2*2*3=24
48=2*2*2*2*3
240=2*2*2*2*3*5
264=2*2*2*3*11
c) НОД (72,432,762)=2*3=6
72=2*2*2*3*3
432=2*2*2*2*3*3*3
762=2*3*127
d) НОД (163,310,997)=1
163=1*163
310=2*5*31
997=1*997
Пошаговое объяснение:



Для нахождения наибольшего общего делителя (НОД) набора чисел, можно использовать различные методы, такие как метод простых множителей или алгоритм Евклида. Я воспользуюсь алгоритмом Евклида.
Алгоритм Евклида для нахождения НОД двух чисел состоит в последовательном делении большего числа на меньшее до тех пор, пока остаток не станет равным нулю. Наибольший общий делитель будет равен последнему ненулевому остатку.
a) Найдем НОД(26, 65, 130):
scssНОД(26, 65) = 13
НОД(13, 130) = 13
Ответ: НОД(26, 65, 130) = 13.
b) Найдем НОД(48, 240, 264):
scssНОД(48, 240) = 48
НОД(48, 264) = 24
Ответ: НОД(48, 240, 264) = 24.
c) Найдем НОД(72, 432, 762):
scssНОД(72, 432) = 72
НОД(72, 762) = 6
Ответ: НОД(72, 432, 762) = 6.
d) Найдем НОД(163, 310, 997):
scssНОД(163, 310) = 1
НОД(1, 997) = 1
Ответ: НОД(163, 310, 997) = 1.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili