Вопрос задан 01.07.2023 в 05:03. Предмет Математика. Спрашивает Иванова Алиса.

Упростить выражение: 3i→−2(4k→+3j→)−2(4j→+4k→−4i→)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шутак Коля.

жбвоароараококоеорпоалкое

б

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для упрощения данного выражения векторное умножение может быть использовано. Применим его по очереди к каждому слагаемому:

  1. -2(4k→+3j→) = -2 * 4k→ - 2 * 3j→ = -8k→ - 6j→
  2. -2(4j→+4k→−4i→) = -2 * 4j→ - 2 * 4k→ + 2 * 4i→ = -8j→ - 8k→ + 8i→

Теперь, когда выражение упрощено, можно объединить все векторы и получить окончательный результат:

3i→ - 8k→ - 6j→ - 8j→ - 8k→ + 8i→

Сгруппируем векторы с одинаковыми направлениями:

(3i→ + 8i→) + (-8k→ - 8k→) + (-6j→) = 11i→ - 16k→ - 6j→

Таким образом, упрощенное выражение равно 11i→ - 16k→ - 6j→.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос