
Arcsin + arccos


Ответы на вопрос

Ответ:



The sum of the inverse trigonometric functions arcsin (also denoted as sin^(-1)) and arccos (also denoted as cos^(-1)) is not a standard trigonometric identity. However, you can calculate it as follows:
Let's say you want to find the value of arcsin(x) + arccos(x), where x is a real number between -1 and 1, inclusive.
Start with the identity: sin^2(θ) + cos^2(θ) = 1, which is true for all real values of θ.
Now, we can write sin^2(θ) = 1 - cos^2(θ) and cos^2(θ) = 1 - sin^2(θ).
Take the square root of both sides of each equation, remembering that sin(θ) and cos(θ) are non-negative for real values of θ between 0 and π.
√(sin^2(θ)) = √(1 - cos^2(θ)) √(cos^2(θ)) = √(1 - sin^2(θ))
Since sin(θ) and cos(θ) are non-negative in this context, you can write:
sin(θ) = √(1 - cos^2(θ)) cos(θ) = √(1 - sin^2(θ))
Now, let's substitute arcsin(x) for θ and simplify:
sin(arcsin(x)) = √(1 - cos^2(arcsin(x))) = √(1 - x^2)
cos(arcsin(x)) = √(1 - sin^2(arcsin(x))) = √(1 - x^2)
Now, you can rewrite arcsin(x) + arccos(x) as follows:
arcsin(x) + arccos(x) = arcsin(x) + arcsin(x)
Combine the two arcsin terms:
arcsin(x) + arcsin(x) = 2 * arcsin(x)
So, the sum of arcsin(x) and arccos(x) is equal to 2 * arcsin(x):
arcsin(x) + arccos(x) = 2 * arcsin(x)
This is the expression for the sum of arcsin and arccos when x is a real number between -1 and 1, inclusive.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili