
3log²₆x-4log₆36x+1=0


Ответы на вопрос

Ответ:
Пошаговое объяснение:




To solve the equation 3log₂₆x - 4log₆36x + 1 = 0, we'll use some logarithmic properties to simplify it step by step:
Use the properties of logarithms to rewrite log₆36x: log₆36x = log₆36 + log₆x Since 36 is 6², we have: log₆36 = log₆(6²) = 2log₆6
So, log₆36x = 2log₆6 + log₆x
Substitute this back into the original equation: 3log₂₆x - 4(2log₆6 + log₆x) + 1 = 0
Distribute the -4 to both terms inside the parentheses: 3log₂₆x - 8log₆6 - 4log₆x + 1 = 0
Combine the like terms (log₆x terms): (3 - 4)log₆x = -8log₆6 - 1 -log₆x = -8log₆6 - 1
Divide both sides by -1 to isolate log₆x: log₆x = 8log₆6 + 1
Now, we'll convert the equation into exponential form. Remember that in exponential form, if you have logₐb = c, then it can be written as a^c = b.
So, in this case: x = 6^(8log₆6 + 1)
Use the properties of logarithms to simplify further: x = 6^(8log₆6) * 6¹
Since 6 is the base of the logarithm, 6^(log₆6) = 6, so we have: x = 6^8 * 6
Calculate 6^8: x = 1679616 * 6
Multiply to find the final result: x = 10077696
So, the solution to the equation 3log₂₆x - 4log₆36x + 1 = 0 is x = 10077696.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili