
Вычислите пятый член геометрической прогрессии (С решением) -2;2...


Ответы на вопрос

Ответ:
а₅= -2
Пошаговое объяснение:
а₁=-2 а₂=2 q=а₁/а₂=2/(-2)=-1
аₙ=а₁*qⁿ⁻¹
а₅=-2*(-1)⁵⁻¹=-2*(-1)⁴= -2
В данной прогрессии все нечетные члены равны -2,а четные члены равны 2.



Для вычисления пятого члена геометрической прогрессии, нам нужно знать первый член (a) и знаменатель (q) этой прогрессии. В данном случае:
Первый член (a) равен -2. Второй член (a₂) равен 2.
Чтобы найти знаменатель (q), мы можем разделить второй член на первый член:
q = a₂ / a q = 2 / (-2) q = -1
Теперь мы можем использовать формулу для нахождения любого члена геометрической прогрессии:
aₙ = a * q^(n-1)
где aₙ - n-й член прогрессии, a - первый член, q - знаменатель, n - порядковый номер члена, который мы хотим найти.
В данном случае, мы хотим найти пятый член (n = 5):
a₅ = -2 * (-1)^(5-1) a₅ = -2 * (-1)^4 a₅ = -2 * 1 a₅ = -2
Пятый член геометрической прогрессии равен -2.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili