
||x|+4|=1 2|x|+3=13 |1-7x|-4=-4


Ответы на вопрос

Ответ:
решение на фотографии




To solve the given absolute value equations, you'll need to consider both the positive and negative cases for the absolute value. Here's how you can solve each equation:
- |x| + 4 = 12
First, isolate the absolute value expression:
|x| = 12 - 4 |x| = 8
Now, you have two cases:
Case 1: x is positive: x = 8
Case 2: x is negative: -x = 8 x = -8
So, there are two solutions: x = 8 and x = -8.
- 2|x| + 3 = 13
Isolate the absolute value expression:
2|x| = 13 - 3 2|x| = 10
Now, divide by 2:
|x| = 5
Again, you have two cases:
Case 1: x is positive: x = 5
Case 2: x is negative: -x = 5 x = -5
So, there are two solutions: x = 5 and x = -5.
- |1 - 7x| - 4 = -4
First, add 4 to both sides of the equation:
|1 - 7x| = 0
Now, you have two cases:
Case 1: 1 - 7x is positive: 1 - 7x = 0 -7x = -1 x = 1/7
Case 2: 1 - 7x is negative: -(1 - 7x) = 0 -1 + 7x = 0 7x = 1 x = 1/7
In this case, both cases lead to the same solution: x = 1/7.
So, the solutions to the given equations are:
- x = 8 or x = -8
- x = 5 or x = -5
- x = 1/7


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili