
Вопрос задан 24.06.2023 в 03:46.
Предмет Математика.
Спрашивает Дудинская Марьяна.
Найти производную функцииy=x^3+3x^2+7x+8


Ответы на вопрос

Отвечает Сайков Максим.
Ответ:
y' = 3x^2 + 6x + 7
Пошаговое объяснение:



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для нахождения производной функции y = x^3 + 3x^2 + 7x + 8, мы можем использовать правило степенной функции. Производная x^n, где n - это константа, равна n*x^(n-1). Применяя это правило к каждому члену функции, получим:
y' = (3 * x^2) + (2 * 3 * x) + 7
Теперь упростим это выражение:
y' = 3x^2 + 6x + 7
Итак, производная функции y = x^3 + 3x^2 + 7x + 8 равна y' = 3x^2 + 6x + 7.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili