Вопрос задан 23.06.2023 в 11:25. Предмет Математика. Спрашивает Унашева Галёка.

15-16х+4х2=0 СРОЧНО ПЛИЗ​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Милостивый Ринат.

Ответ:

a-4  b-16  c-15

D=b^2-4ac

D=256-240=-16

x1=-16-16/2*4=-32/8=-4

x2=-16+16/2*4=1/8

x1=-4

x2=1/8

0 0
Отвечает Pachkalov Kirill.

Ответ:

15-16х+4х2=0. ответ с решением


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим данное квадратное уравнение: 1516x+4x2=015 - 16x + 4x^2 = 0.

Сначала перепишем уравнение в стандартной форме квадратного уравнения: 4x216x+15=04x^2 - 16x + 15 = 0.

Теперь воспользуемся квадратным уравнением: ax2+bx+c=0ax^2 + bx + c = 0, где a=4a = 4, b=16b = -16 и c=15c = 15.

Для решения используем формулу квадратного корня:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Подставим значения aa, bb и cc:

x=(16)±(16)24×4×152×4x = \frac{-(-16) \pm \sqrt{(-16)^2 - 4 \times 4 \times 15}}{2 \times 4}

x=16±2562408x = \frac{16 \pm \sqrt{256 - 240}}{8}

x=16±168x = \frac{16 \pm \sqrt{16}}{8}

x=16±48x = \frac{16 \pm 4}{8}

Теперь найдем два значения xx:

x1=16+48=208=52x_1 = \frac{16 + 4}{8} = \frac{20}{8} = \frac{5}{2}

x2=1648=128=32x_2 = \frac{16 - 4}{8} = \frac{12}{8} = \frac{3}{2}

Итак, у нас есть два корня уравнения:

x1=52x_1 = \frac{5}{2} x2=32x_2 = \frac{3}{2}

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос