Вопрос задан 21.06.2023 в 17:36. Предмет Математика. Спрашивает Царев Даниил.

Решите уравнение и в ответе указать наибольший корень: log_2^2(3x+5)+2log_2(3x+5)-3=0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Веселовская Екатерина.

Ответ:

-1

Пошаговое объяснение:

\log_2^2(3x+5)+2\log_2(3x+5)-3=0

Область допустимых значений: 3x+5 > 0, x > -5/3

Введем замену: \log_2(3x+5)=t, \; t\in\mathbb {R}. Тогда t²+2t-3 = 0

По теореме Виета

\begin{cases}   t_1+t_2=-2\\t_1*t_2=-3 \end{cases}\\\begin{cases}   t_1=-3\\t_2=1 \end{cases}

Вернемся к замене:

Если t = -3, то

\log_2(3x+5)=-3

3x+5 = 2^(-3)

3x+5 = 1/8

24x+40 = 1

24x = -39

x = -39/24         (-39/24 > -40/24 = -5/3)

x = -13/8

________________

Если t = 1, то

\log_2(3x+5)=1

3x+5 = 2¹

3x+5 = 2

3x = -3

x = -1                 (-1 = -3/3 > -5/3)

Оба найденных корня — -13/8 и -1 — входят в ОДЗ.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим уравнение:

log₂²(3x+5) + 2log₂(3x+5) - 3 = 0

Сначала воспользуемся заменой переменной. Обозначим y = log₂(3x+5), тогда у нас будет следующее уравнение:

y² + 2y - 3 = 0

Теперь это уравнение можно решить как квадратное уравнение. Для этого мы можем использовать квадратное уравнение вида ay² + by + c = 0 и формулу для его решения:

y = (-b ± √(b² - 4ac)) / 2a

В нашем случае:

a = 1, b = 2, c = -3

Теперь подставим значения a, b и c в формулу:

y = (-2 ± √(2² - 4 * 1 * (-3))) / (2 * 1)

y = (-2 ± √(4 + 12)) / 2

y = (-2 ± √16) / 2

y = (-2 ± 4) / 2

Теперь найдем два значения y:

  1. y₁ = (-2 + 4) / 2 = 2 / 2 = 1
  2. y₂ = (-2 - 4) / 2 = -6 / 2 = -3

Теперь, учитывая, что y = log₂(3x+5), мы можем найти два значения x:

  1. log₂(3x+5) = 1
  2. log₂(3x+5) = -3

Для первого уравнения:

log₂(3x+5) = 1

3x+5 = 2

3x = -3

x = -1

Для второго уравнения:

log₂(3x+5) = -3

3x+5 = 2⁻³

3x+5 = 1/8

3x = 1/8 - 5

3x = -39/8

x = (-39/8) / 3

x = -13/8

Итак, у нас есть два корня x: -1 и -13/8. Наибольший корень -1.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос