
Вопрос задан 21.06.2023 в 01:52.
Предмет Математика.
Спрашивает Ахмадова Мадина.
Знайдіть найбільший спільний дільник чисел a та b, якщо a = 2 ⋅ 2 ⋅ 3 ⋅ 5 ⋅ 5 ⋅ 5 ⋅ 19 b = 2 ⋅ 3
⋅ 3 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 Виберіть одну відповідь: 18 42 30 6

Ответы на вопрос

Отвечает Чепчугов Миша.
Ответ:
42 30 вот как то так просто твм симаолов надо 20шт.



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Щоб знайти найбільший спільний дільник (НСД) чисел a і b, спершу розкладемо обидва числа на прості множники, а потім знайдемо спільні прості множники і помножимо їх разом.
a = 2 * 2 * 3 * 5 * 5 * 5 * 19 b = 2 * 3 * 3 * 3 * 5 * 7 * 11
Тепер, спростимо обидва числа, видаливши всі спільні прості множники, і залишаючи лише найменший краткий запис кожного числа:
a = 2 * 5 * 19 b = 7 * 11
Тепер ми можемо знайти НСД чисел a і b, помноживши всі їх спільні прості множники:
НСД(a, b) = 2 * 5 * 19 * 7 * 11 = 2090
Отже, найбільший спільний дільник чисел a і b дорівнює 2090. Відповідь: 2090.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili