
Помогите решить тригонометрические уравнения √3tgx-3≤0 2cosx+√3≥0 Срочно пожалуйста


Ответы на вопрос

Пошаговое объяснение:
............ ...............





Solving Trigonometric Equations
To solve the trigonometric equations √3tg(x) - 3 ≤ 0 and 2cos(x) + √3 ≥ 0, we will break down the process step by step.
Step 1: Simplify the Equations
Let's simplify the equations to make them easier to work with.
For the first equation, √3tg(x) - 3 ≤ 0, we can rewrite it as:
√3tan(x) - 3 ≤ 0
For the second equation, 2cos(x) + √3 ≥ 0, we don't need to make any changes.
Step 2: Solve the First Equation
To solve the equation √3tan(x) - 3 ≤ 0, we need to isolate the variable x.
Add 3 to both sides of the equation:
√3tan(x) ≤ 3
Next, divide both sides of the equation by √3:
tan(x) ≤ 3/√3
Simplify the right side of the equation:
tan(x) ≤ √3
Now, we need to find the values of x that satisfy this inequality. We can use the unit circle or a calculator to find the values of x for which the tangent function is less than or equal to √3.
The solutions to the inequality tan(x) ≤ √3 are:
x ≤ π/3 + nπ, where n is an integer
Step 3: Solve the Second Equation
To solve the equation 2cos(x) + √3 ≥ 0, we need to isolate the variable x.
Subtract √3 from both sides of the equation:
2cos(x) ≥ -√3
Next, divide both sides of the equation by 2:
cos(x) ≥ -√3/2
Now, we need to find the values of x that satisfy this inequality. We can use the unit circle or a calculator to find the values of x for which the cosine function is greater than or equal to -√3/2.
The solutions to the inequality cos(x) ≥ -√3/2 are:
x ≥ 5π/6 + 2nπ or x ≤ 7π/6 + 2nπ, where n is an integer
Step 4: Combine the Solutions
To find the values of x that satisfy both equations, we need to find the intersection of the solution sets from Step 2 and Step 3.
The values of x that satisfy both equations are:
x ≤ π/3 + nπ, where n is an integer, and x ≥ 5π/6 + 2nπ or x ≤ 7π/6 + 2nπ, where n is an integer.
In other words, x can take on any value that satisfies both the inequality tan(x) ≤ √3 and the inequality cos(x) ≥ -√3/2.
I hope this helps! Let me know if you have any further questions.


Похожие вопросы


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili