
Скольким способами из цифр от 0 до 9 можно поставить два четырёхзначных числа и одно двузначное
число таким образом чтобы их сумма была наименьшей из возможных? Чему равна эта сумма?

Ответы на вопрос

Ответ:
20112202102
Пошаговое объяснение:
20112202102



Problem Analysis
To find the two four-digit numbers and one two-digit number such that their sum is the smallest possible, we need to consider the following: - The four-digit numbers can be formed using the digits from 0 to 9. - The two-digit number can also be formed using the digits from 0 to 9. - We want to minimize the sum of these three numbers.Solution
To minimize the sum, we can start by assigning the smallest possible digits to the most significant places in the four-digit numbers. This will ensure that the sum remains as small as possible.Let's go step by step:
1. For the first four-digit number, we can assign the digit 0 to the thousands place. This will make it the smallest possible four-digit number. 2. For the second four-digit number, we can assign the digit 1 to the thousands place. This will make it the second smallest four-digit number. 3. For the two-digit number, we can assign the digit 2 to the tens place. This will make it the smallest possible two-digit number.
So, the three numbers are: - First four-digit number: 0XYZ - Second four-digit number: 1UVW - Two-digit number: 2AB
Now, let's assign the remaining digits to the respective places in these numbers.
For the first four-digit number: - The digit X can be any digit from 0 to 9, excluding 0. - The digit Y can be any digit from 0 to 9, excluding 0 and X. - The digit Z can be any digit from 0 to 9, excluding 0, X, and Y.
For the second four-digit number: - The digit U can be any digit from 0 to 9, excluding 1. - The digit V can be any digit from 0 to 9, excluding 1 and U. - The digit W can be any digit from 0 to 9, excluding 1, U, and V.
For the two-digit number: - The digit A can be any digit from 0 to 9, excluding 2. - The digit B can be any digit from 0 to 9, excluding 2 and A.
Now, let's calculate the sum of these three numbers.
Calculation
The sum of the three numbers can be calculated as follows:Sum = 0XYZ + 1UVW + 2AB
Since we want to minimize the sum, we need to assign the smallest possible values to X, Y, Z, U, V, W, A, and B.
The smallest possible values for these digits are: - X = 1 - Y = 2 - Z = 3 - U = 0 - V = 4 - W = 5 - A = 6 - B = 7
Substituting these values into the sum equation, we get:
Sum = 0123 + 1045 + 267
Calculating the sum, we find:
Sum = 2188 + 1045 + 267 = 3500
Therefore, the sum of the two four-digit numbers and one two-digit number, such that their sum is the smallest possible, is 3500.
Conclusion
To minimize the sum of the two four-digit numbers and one two-digit number, we assign the smallest possible digits to the most significant places in the four-digit numbers. The sum of these three numbers is 3500.

Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili