Вопрос задан 19.06.2023 в 16:04. Предмет Математика. Спрашивает Namazbekova Maia.

Помогите математика дроби

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тупиков Сергей.

Пошаговое объяснение:

Решение :

1)

х/28 +1 2/7 = 5/28

х/28 + 9/7 = 5/28(общий множитель 28)

х/28 + 9*4/28 = 5/28

х/28 +36/28 = 5/28 |*28

28х + 28*36 = 5*28

28х + 1008 = 140

28х = 140-1008

28х = - 868

х = - 868/28

х = - 31

2)

х/6 +1/8 = 1 7/24

х/6 + 1/8 = 31/24 (общий множитель 24)

4*х/24 +1*3/24 = 31/24

4х/24 + 3/24 = 31/24 | *24

24*4х + 24*3 = 31*24

96х + 72 = 344

96х = 344-72

96х = 272

х = 272/96

х = 2 80/96(сокращаем на 8)

х = 2 10/12(сократим на 2)

х = 2 5/6

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Understanding Fractions

Fractions are a fundamental concept in mathematics. They represent a part of a whole or a division of a quantity into equal parts. A fraction consists of a numerator and a denominator, separated by a slash (/). The numerator represents the number of parts we have, while the denominator represents the total number of equal parts that make up the whole.

For example, in the fraction 3/4, the numerator is 3, indicating that we have three parts, and the denominator is 4, indicating that the whole is divided into four equal parts.

Simplifying Fractions

To simplify a fraction, we divide both the numerator and the denominator by their greatest common divisor (GCD). The GCD is the largest number that divides both the numerator and the denominator without leaving a remainder.

For example, to simplify the fraction 6/12, we find the GCD of 6 and 12, which is 6. Dividing both the numerator and the denominator by 6, we get 1/2, which is the simplified form of the fraction.

Adding and Subtracting Fractions

To add or subtract fractions, we need to have a common denominator. The common denominator is the least common multiple (LCM) of the denominators of the fractions we want to add or subtract.

For example, to add 1/4 and 3/8, we find the LCM of 4 and 8, which is 8. We convert both fractions to have a denominator of 8: 1/4 becomes 2/8, and 3/8 remains the same. Then, we add the numerators: 2/8 + 3/8 = 5/8.

Similarly, to subtract fractions, we follow the same process of finding a common denominator and then subtracting the numerators.

Multiplying and Dividing Fractions

To multiply fractions, we simply multiply the numerators and multiply the denominators. The resulting fraction is the product of the two fractions.

For example, to multiply 2/3 and 4/5, we multiply the numerators (2 * 4 = 8) and multiply the denominators (3 * 5 = 15). The product is 8/15.

To divide fractions, we multiply the first fraction by the reciprocal of the second fraction. The reciprocal of a fraction is obtained by swapping the numerator and the denominator.

For example, to divide 2/3 by 4/5, we multiply 2/3 by the reciprocal of 4/5, which is 5/4. The division becomes (2/3) * (5/4) = 10/12. We can simplify this fraction by dividing both the numerator and the denominator by their GCD, which is 2. The simplified result is 5/6.

Solving Specific Fraction Problems

If you have any specific fraction problems or questions, please provide more details, and I'll be happy to help you further.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос