Вопрос задан 17.06.2023 в 15:30. Предмет Математика. Спрашивает Тезикова Настя.

Найти все частные производные производные 2 порядка u=xyln(y/z)​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Стрепунина Даша.

u=xy\ln\dfrac{y}{z}

Сначала найдем частные производные первого порядка:

u'_x=\left(xy\ln\dfrac{y}{z}\right)'_x=\boxed{y\ln\dfrac{y}{z}}

u'_y=\left(xy\ln\dfrac{y}{z}\right)'_y=x\left(y\ln\dfrac{y}{z}\right)'_y=x\left(y'_y\cdot\ln\dfrac{y}{z}+y\cdot\left(\ln\dfrac{y}{z}\right)'_y\right)=

=x\left(1\cdot\ln\dfrac{y}{z}+y\cdot\dfrac{z}{y} \cdot\left(\dfrac{y}{z}\right)'_y\right)=x\left(\ln\dfrac{y}{z}+z\cdot\dfrac{1}{z}\right)=\boxed{x\left(\ln\dfrac{y}{z}+1\right)}

u'_z=\left(xy\ln\dfrac{y}{z}\right)'_z=xy\left(\ln\dfrac{y}{z}\right)'_z=xy\cdot \dfrac{z}{y}\cdot\left(\dfrac{y}{z}\right)'_z=xz\cdot y\cdot\left(\dfrac{1}{z}\right)'_z=

=xyz\cdot \left(-\dfrac{1}{z^2}\right)=\boxed{-\dfrac{xy}{z}}

Теперь найдем частные производные второго порядка:

u''_{xx}=(u'_x)'_x=\left(y\ln\dfrac{y}{z}\right)'_x=\boxed{0}

u''_{yy}=(u'_y)'_y=\left(x\left(\ln\dfrac{y}{z}+1\right)\right)'_y=x\left(\ln\dfrac{y}{z}+1\right)'_y=x\left(\dfrac{z}{y}\cdot\left(\dfrac{y}{z}\right)'_y+0\right)=

=\dfrac{xz}{y}\cdot\dfrac{1}{z}=\boxed{\dfrac{x}{y}}

u''_{zz}=(u'_z)'_z=\left(-\dfrac{xy}{z}\right)'_z=-xy\cdot\left(\dfrac{1}{z}\right)'_z=-xy\cdot\left(-\dfrac{1}{z^2}\right)=\boxed{\dfrac{xy}{z^2}}

u''_{xy}=u''_{yx}=(u'_y)'_x=\left(x\left(\ln\dfrac{y}{z}+1\right)\right)'_x=\boxed{\ln\dfrac{y}{z}+1}

u''_{xz}=u''_{zx}=(u'_z)'_x=\left(-\dfrac{xy}{z}\right)'_x=\boxed{-\dfrac{y}{z}}

u''_{yz}=u''_{zy}=(u'_z)'_y=\left(-\dfrac{xy}{z}\right)'_y=\boxed{-\dfrac{x}{z}}

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Finding the Partial Derivatives of the Second Order

To find the partial derivatives of the second order for the function u = xyln(y/z), we need to calculate the partial derivatives with respect to each variable twice.

Let's start by finding the first-order partial derivatives:

- Partial derivative with respect to x (ux): To find ux, we differentiate u with respect to x while treating y and z as constants. Taking the derivative of xyln(y/z) with respect to x, we get: ux = yln(y/z).

- Partial derivative with respect to y (uy): To find uy, we differentiate u with respect to y while treating x and z as constants. Taking the derivative of xyln(y/z) with respect to y, we get: uy = x(ln(y/z) + 1).

- Partial derivative with respect to z (uz): To find uz, we differentiate u with respect to z while treating x and y as constants. Taking the derivative of xyln(y/z) with respect to z, we get: uz = -xy/(z).

Now, let's find the second-order partial derivatives:

- Second-order partial derivative with respect to x (uxx): To find uxx, we differentiate ux with respect to x while treating y and z as constants. Taking the derivative of yln(y/z) with respect to x, we get: uxx = 0.

- Second-order partial derivative with respect to y (uyy): To find uyy, we differentiate uy with respect to y while treating x and z as constants. Taking the derivative of x(ln(y/z) + 1) with respect to y, we get: uyy = 0.

- Second-order partial derivative with respect to z (uzz): To find uzz, we differentiate uz with respect to z while treating x and y as constants. Taking the derivative of -xy/(z) with respect to z, we get: uzz = 2xy/(z^3).

- Second-order partial derivative with respect to x and y (uxy): To find uxy, we differentiate ux with respect to y while treating x and z as constants. Taking the derivative of yln(y/z) with respect to y, we get: uxy = ln(y/z).

- Second-order partial derivative with respect to x and z (uxz): To find uxz, we differentiate ux with respect to z while treating x and y as constants. Taking the derivative of yln(y/z) with respect to z, we get: uxz = -y/(z).

- Second-order partial derivative with respect to y and z (uyz): To find uyz, we differentiate uy with respect to z while treating x and y as constants. Taking the derivative of x(ln(y/z) + 1) with respect to z, we get: uyz = -x/(z).

Now we have found all the second-order partial derivatives for the function u = xyln(y/z).

Please let me know if there's anything else I can help you with!

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос