
Найти все частные производные производные 2 порядка u=xyln(y/z)


Ответы на вопрос

Сначала найдем частные производные первого порядка:
Теперь найдем частные производные второго порядка:



Finding the Partial Derivatives of the Second Order
To find the partial derivatives of the second order for the function u = xyln(y/z), we need to calculate the partial derivatives with respect to each variable twice.
Let's start by finding the first-order partial derivatives:
- Partial derivative with respect to x (ux): To find ux, we differentiate u with respect to x while treating y and z as constants. Taking the derivative of xyln(y/z) with respect to x, we get: ux = yln(y/z).
- Partial derivative with respect to y (uy): To find uy, we differentiate u with respect to y while treating x and z as constants. Taking the derivative of xyln(y/z) with respect to y, we get: uy = x(ln(y/z) + 1).
- Partial derivative with respect to z (uz): To find uz, we differentiate u with respect to z while treating x and y as constants. Taking the derivative of xyln(y/z) with respect to z, we get: uz = -xy/(z).
Now, let's find the second-order partial derivatives:
- Second-order partial derivative with respect to x (uxx): To find uxx, we differentiate ux with respect to x while treating y and z as constants. Taking the derivative of yln(y/z) with respect to x, we get: uxx = 0.
- Second-order partial derivative with respect to y (uyy): To find uyy, we differentiate uy with respect to y while treating x and z as constants. Taking the derivative of x(ln(y/z) + 1) with respect to y, we get: uyy = 0.
- Second-order partial derivative with respect to z (uzz): To find uzz, we differentiate uz with respect to z while treating x and y as constants. Taking the derivative of -xy/(z) with respect to z, we get: uzz = 2xy/(z^3).
- Second-order partial derivative with respect to x and y (uxy): To find uxy, we differentiate ux with respect to y while treating x and z as constants. Taking the derivative of yln(y/z) with respect to y, we get: uxy = ln(y/z).
- Second-order partial derivative with respect to x and z (uxz): To find uxz, we differentiate ux with respect to z while treating x and y as constants. Taking the derivative of yln(y/z) with respect to z, we get: uxz = -y/(z).
- Second-order partial derivative with respect to y and z (uyz): To find uyz, we differentiate uy with respect to z while treating x and y as constants. Taking the derivative of x(ln(y/z) + 1) with respect to z, we get: uyz = -x/(z).
Now we have found all the second-order partial derivatives for the function u = xyln(y/z).
Please let me know if there's anything else I can help you with!


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili