 
Найти все частные производные производные 2 порядка u=xyln(y/z)
 0
        0
         0
        0
    Ответы на вопрос
 
        Сначала найдем частные производные первого порядка:
Теперь найдем частные производные второго порядка:
 0
                    0
                     0
                    0
                 
            Finding the Partial Derivatives of the Second Order
To find the partial derivatives of the second order for the function u = xyln(y/z), we need to calculate the partial derivatives with respect to each variable twice.
Let's start by finding the first-order partial derivatives:
- Partial derivative with respect to x (ux): To find ux, we differentiate u with respect to x while treating y and z as constants. Taking the derivative of xyln(y/z) with respect to x, we get: ux = yln(y/z).
- Partial derivative with respect to y (uy): To find uy, we differentiate u with respect to y while treating x and z as constants. Taking the derivative of xyln(y/z) with respect to y, we get: uy = x(ln(y/z) + 1).
- Partial derivative with respect to z (uz): To find uz, we differentiate u with respect to z while treating x and y as constants. Taking the derivative of xyln(y/z) with respect to z, we get: uz = -xy/(z).
Now, let's find the second-order partial derivatives:
- Second-order partial derivative with respect to x (uxx): To find uxx, we differentiate ux with respect to x while treating y and z as constants. Taking the derivative of yln(y/z) with respect to x, we get: uxx = 0.
- Second-order partial derivative with respect to y (uyy): To find uyy, we differentiate uy with respect to y while treating x and z as constants. Taking the derivative of x(ln(y/z) + 1) with respect to y, we get: uyy = 0.
- Second-order partial derivative with respect to z (uzz): To find uzz, we differentiate uz with respect to z while treating x and y as constants. Taking the derivative of -xy/(z) with respect to z, we get: uzz = 2xy/(z^3).
- Second-order partial derivative with respect to x and y (uxy): To find uxy, we differentiate ux with respect to y while treating x and z as constants. Taking the derivative of yln(y/z) with respect to y, we get: uxy = ln(y/z).
- Second-order partial derivative with respect to x and z (uxz): To find uxz, we differentiate ux with respect to z while treating x and y as constants. Taking the derivative of yln(y/z) with respect to z, we get: uxz = -y/(z).
- Second-order partial derivative with respect to y and z (uyz): To find uyz, we differentiate uy with respect to z while treating x and y as constants. Taking the derivative of x(ln(y/z) + 1) with respect to z, we get: uyz = -x/(z).
Now we have found all the second-order partial derivatives for the function u = xyln(y/z).
Please let me know if there's anything else I can help you with!
 0
                    0
                     0
                    0
                Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			