Вопрос задан 17.06.2023 в 11:39. Предмет Математика. Спрашивает Моложавый Олег.

Вычислить криволинейный интеграл: от точки А(0;0) до точки В(1;1) по линии

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Емельянов Егор.

Ответ:

Вычисляем криволинейный интеграл 2 рода , заменяя  у  и  dy  выражениями через переменную  х .

\displaystyle L:\  y=\sqrt[4]{x}\ \ ,\ \ dy=\dfrac{1}{4}\cdot x^{-\frac{3}{4}}\, dx=\dfrac{dx}{4\sqrt[4]{x^3}}\ \ ,\ \ \ A(0;0)\ ,\ B(1;1)\\\\\int\limits_{L}\, y^3\, dx+2xy\, dy=\int\limits_0^1\, \sqrt[4]{x^3}\, dx+2x\sqrt[4]{x}\, \frac{dx}{4\sqrt[4]{x^3}}=\int\limits_0^1\, x^{\frac{3}{4}}\, dx+\int\limits_0^1\, \dfrac{1}{2}\, x^{\frac{1}{2}}\, dx=\\\\\\=\frac{4x^{\frac{7}{4}}}{7}\, \Big|_0^1\ +\ \frac{1}{2}\cdot \frac{2x^{\frac{3}{2}}}{3}\, \Big|_0^1=\frac{4}{7}-\frac{1}{3}=\frac{12-7}{21}=\frac{5}{21}

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

К сожалению, ваш вопрос обрезан. Пожалуйста, продолжите ввод, чтобы я мог помочь вам с вычислением криволинейного интеграла от точки A(0;0) до точки B(1;1) по указанной линии.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос