
ПОЖАЛУЙСТА. Катер шел по течению реки 180 км, а затем вернулся обратно, причем на обратный путь
было затрачено на 8 часов больше. Скорость течения реки равна 4 км/ч. Найди собственную скорость катера (в км/ч)

Ответы на вопрос

Ответ:
14
Пошаговое объяснение:
x - скорость катера, км/ч.
180/(x-4) -180/(x+4)=8 |4
(45(x+4-x+4))/((x-4)(x+4))=2
360=2(x²-16)
x²-16=360/2
x²=180+16
x=√196
x=14 км/ч



Problem Analysis
We are given that a boat traveled 180 km downstream and then returned upstream, taking 8 hours longer for the return trip. The speed of the river current is given as 4 km/h. We need to find the speed of the boat.Solution
Let's assume the speed of the boat in still water is x km/h.When the boat is traveling downstream, its effective speed is increased by the speed of the river current. So the boat's speed downstream is (x + 4) km/h.
When the boat is traveling upstream, its effective speed is decreased by the speed of the river current. So the boat's speed upstream is (x - 4) km/h.
We can use the formula distance = speed × time to calculate the time taken for each leg of the journey.
1. Downstream journey: - Distance = 180 km - Speed = (x + 4) km/h - Time = Distance / Speed
2. Upstream journey: - Distance = 180 km - Speed = (x - 4) km/h - Time = Distance / Speed
According to the problem, the time taken for the upstream journey is 8 hours longer than the time taken for the downstream journey. So we can set up the equation:
(Time upstream) = (Time downstream) + 8
Substituting the values we calculated earlier:
(180 / (x - 4)) = (180 / (x + 4)) + 8
Now we can solve this equation to find the value of x, which represents the speed of the boat in still water.
Calculation
Let's solve the equation:(180 / (x - 4)) = (180 / (x + 4)) + 8
To simplify the equation, we can multiply both sides by (x - 4)(x + 4) to eliminate the denominators:
180(x + 4) = 180(x - 4) + 8(x - 4)(x + 4)
Expanding and simplifying:
180x + 720 = 180x - 720 + 8(x^2 - 16)
Simplifying further:
180x + 720 = 180x - 720 + 8x^2 - 128
Rearranging the terms:
8x^2 - 128 = 0
Dividing both sides by 8:
x^2 - 16 = 0
Factoring:
(x - 4)(x + 4) = 0
Solving for x:
x - 4 = 0 --> x = 4
x + 4 = 0 --> x = -4
Since the speed of the boat cannot be negative, we discard the solution x = -4.
Therefore, the speed of the boat in still water is 4 km/h.
Answer
The speed of the boat in still water is 4 km/h.

Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili