
7. Докажите, что для любого числа 1, 2, 2n можно записать по кругу так, чтобы любые два соседних
отличались не более, чемна 2

Ответы на вопрос

3, ..., 2n − 3, 2n − 1, 2n, 2n − 2, 2n − 4, ..., 2, 1
1 замыкает круг.



Circular Arrangement of Numbers
To prove that for any number 1, 2, 2n, it is possible to arrange them in a circle such that any two adjacent numbers differ by no more than 2, we can use the following approach:
Let's consider the numbers 1, 2, 2n and arrange them in a circle. We need to ensure that the difference between any two adjacent numbers is at most 2.
We can start by placing the number 1 at the top of the circle. Then, we can place the number 2n at the bottom of the circle. This leaves us with the number 2 to place in between 1 and 2n.
To ensure that the difference between any two adjacent numbers is at most 2, we can place the number 2 in such a way that it is equidistant from 1 and 2n. This can be achieved by placing 2 at the midpoint between 1 and 2n on the circle.
This arrangement satisfies the condition that any two adjacent numbers differ by no more than 2, as the difference between 1 and 2 is 1, and the difference between 2 and 2n is also at most 2n-2.
Therefore, it is possible to arrange the numbers 1, 2, 2n in a circle such that any two adjacent numbers differ by no more than 2.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili