Вопрос задан 17.06.2023 в 03:34. Предмет Математика. Спрашивает Плотникова Софья.

через первую трубу водоём можно наполнить за 8ч а через вторую на 4 часа дольше чем через первую за

сколько часов наполнится водоём при совместной работе этих труб ​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Резанов Дима.

Ответ:

Пошаговое объяснение:

Первая труба заполняет водоем за 8 часов.

Вторая труба : 8+4=12 часов.

Заполнение водоема при работе двух труб:  (1/t)

1/8+1/12=(3+2)/24=5/24

t=24/5=4,8ч.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We have two pipes, and the first pipe can fill a reservoir in 8 hours, while the second pipe takes 4 hours longer than the first pipe to fill the reservoir. We need to determine how long it will take to fill the reservoir when both pipes are working together.

Solution

Let's assume that the first pipe can fill the reservoir in 1 hour. Since the second pipe takes 4 hours longer than the first pipe, it will take 5 hours to fill the reservoir.

To find the combined rate at which both pipes fill the reservoir, we can calculate the sum of their individual rates. The rate of the first pipe is 1 reservoir per 8 hours, and the rate of the second pipe is 1 reservoir per 5 hours.

To find the time it takes to fill the reservoir when both pipes are working together, we can divide the total volume of the reservoir by the combined rate of the two pipes.

Let's calculate the time it takes to fill the reservoir when both pipes are working together:

1. Calculate the combined rate of the two pipes: - The rate of the first pipe is 1 reservoir per 8 hours. - The rate of the second pipe is 1 reservoir per 5 hours. - The combined rate is the sum of their individual rates: 1/8 + 1/5 = 13/40 reservoirs per hour.

2. Calculate the time it takes to fill the reservoir when both pipes are working together: - Let's assume the volume of the reservoir is 40 units (this is an arbitrary value for calculation purposes). - Divide the volume of the reservoir by the combined rate of the two pipes: 40 / (13/40) = 40 * (40/13) = 123.08 hours.

Therefore, it will take approximately 123.08 hours to fill the reservoir when both pipes are working together.

Answer

When both pipes are working together, it will take approximately 123.08 hours to fill the reservoir.

Please note that the above calculation assumes that the rates of the pipes are constant and do not change over time.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос