Вопрос задан 17.06.2023 в 03:19. Предмет Математика. Спрашивает Казакова Эльвира.

СпростỈть вираз-5cos² 12°-5sin² 12° -2.​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кулаков Максим.

-5\cos^2 12\textdegree-5\sin^2 12\textdegree-2=-5-2=-7

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Выражение 5cos² 12° - 5sin² 12° - 2

Давайте разберемся с этим математическим выражением по шагам.

1. Используем тригонометрические тождества Начнем с использования тригонометрического тождества: \[cos²θ + sin²θ = 1\]

Это тождество известно как тригонометрическое тождество Пифагора. Мы можем использовать его, чтобы упростить исходное выражение.

2. Применяем тригонометрическое тождество

Подставим тождество в исходное выражение: \[5cos² 12° - 5sin² 12° - 2\] \[5(1 - sin² 12°) - 5sin² 12° - 2\]

3. Раскрываем скобки и упрощаем

Раскроем скобки и упростим выражение: \[5 - 5sin² 12° - 5sin² 12° - 2\] \[5 - 10sin² 12° - 2\] \[3 - 10sin² 12°\]

4. Завершаем упрощение

В итоге у нас получается упрощенное выражение: \[3 - 10sin² 12°\]

Таким образом, упрощенное выражение для \(5cos² 12° - 5sin² 12° - 2\) равно \(3 - 10sin² 12°\).

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос